Math 5C Discussion Problems 2

Path Independence

1. Let C be the striaght-line path in \mathbb{R}^{2} from the origin to $(3,1)$. Define $f(x, y)=x y e^{x y}$.
(a) Evaluate $\int_{C} \nabla f \cdot d \mathbf{r}$.
(b) Evaluate $\int_{C}((1,0)+\nabla f) \cdot d \mathbf{r}$.
(c) Evaluate $\int_{C}((y, 0)+\nabla f) \cdot d \mathbf{r}$.
2. Let C be the positively oriented unit circle in \mathbb{R}^{2} centered at the origin.
(a) Evaluate $\oint_{C} y d x-x d y$.
(b) Use the previous part to explain why $(y,-x)$ isn't the gradient of a function.
3. For each of the following vector fields, determine whether it is the gradient of a function.
(a) $\left(4 x^{2}-4 y^{2}+x, 7 x y+\ln y\right)$ on \mathbb{R}^{2}
(b) $\left(3 x^{2} \ln x+x^{2}, x^{3} / y\right)$ on \mathbb{R}^{2}
(c) $\left(x^{3} y, 0, z^{2}\right)$ on \mathbb{R}^{3}
4. For each of the following, find the function f.
(a) $f(0,0,0)=0$ and $\nabla f=(x, y, z)$
(b) $f(1,2,3)=4$ and $\nabla f=(5,6,7)$
(c) $f(1,1,1)=1$ and $\nabla f=\left(2 x y z+\sin x, x^{2} z, x^{2} y\right)$
5. For which a is ($\left.a x \ln y, 2 y+x^{2} / y\right)$ the gradient of a function in (some subset of) \mathbb{R}^{2} ?
6. Let C be a curve in \mathbb{R}^{2} given by $\mathbf{r}(t)=\left(\cos ^{5} t, \sin ^{3} t, t^{4}\right)$, where $0 \leq t \leq \pi$. Evaluate $\int_{C}(y z, x z, x y) \cdot d \mathbf{r}$.

Green's Theorem

1. Let D be the unit disk centered at the origin in \mathbb{R}^{2}.
(a) Evaluate $\oint_{\partial D} d x+x d y$.
(b) Evaluate $\oint_{\partial D} \arctan \left(e^{\sin x}\right) d x+y d y$.
(c) Evaluate $\oint_{\partial D}\left(x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y$.
(d) Evaluate $\oint_{\partial D} \frac{\partial f}{\partial y} d x-\frac{\partial f}{\partial x} d y$, given that $f_{x x}+f_{y y}=0$.
2. Find the area of the following regions in \mathbb{R}^{2} using Green's theorem.
(a) The unit disk
(b) The inverted cycloid: the region bounded by the x axis and the parametric curve $x=a(t-\sin t)$, $y=a(1-\cos t), 0 \leq t \leq 2 \pi$
(c) The astroid: $x^{2 / 3}+y^{2 / 3} \leq a^{2 / 3}$
(d) The ellipse: $x^{2} / a^{2}+y^{2} / b^{2} \leq 1$
3. Let R be a region in the plane with ∂R positively oriented. On $\partial R, d \mathbf{r}=(d x, d y)$. Derive an expression for $\mathbf{n} d s$ in terms of $d x$ and $d y$. Deduce (using the 'standard' Green's theorem) the normal form of Green's theorem:

$$
\oint_{\partial R} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R} \nabla \cdot \mathbf{F} d A .
$$

Notice that this is just a 2D version of the divergence theorem.
4. Let f be a smooth function and D be a disk in \mathbb{R}^{2} with outward unit normal \mathbf{n}. For points on ∂D, denote $\partial f / \partial n$ to mean the directional derivative of f in the direction of \mathbf{n}. Prove that

$$
\oint_{\partial D} \frac{\partial f}{\partial n} d s=\iint_{D} \Delta f d A .
$$

5. Prove the identity $\oint_{\partial D} f \nabla f \cdot \mathbf{n} d s=\iint_{D}\left(f \Delta f+\|\nabla f\|^{2}\right) d A$.
6. Prove the identity $\oint_{\partial D} P Q d x+P Q d y=\iint_{D}\left[Q\left(\frac{\partial P}{\partial x}-\frac{\partial P}{\partial y}\right)+P\left(\frac{\partial Q}{\partial x}-\frac{\partial Q}{\partial y}\right)\right] d A$.

Divergence Theorem

1. In each of the following situations, evaluate $\iint_{\partial R} \mathbf{F} \cdot d \mathbf{A}$. Assume ∂R is outward oriented.
(a) Let R be the unit ball centered at the origin and $\mathbf{F}=(x, 2 y, 3 z)$.
(b) Let R be the unit cube $0 \leq x, y, z \leq 1$ and $\mathbf{F}=\left(y^{2}+\sin z, e^{\sin z}+2, x y+z\right)$.
(c) Let R be the hemisphere $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$ and $\mathbf{F}=\left(x z, y z, z^{2}\right)$.
2. Let S_{1} be the disk $x^{2}+y^{2} \leq 1, z=1$, oriented upward. Let S_{2} be the cone $x^{2}+y^{2}=z^{2}, 0 \leq z \leq 1$, oriented downward. Together, S_{1} and S_{2} enclose a region R. Define $\mathbf{F}=\left(x+e^{y}, y+\cos x, z\right)$.
(a) Find the flux of \mathbf{F} across S_{1} directly.
(b) Integrate $\nabla \cdot \mathbf{F}$ over R.
(c) With no extra computation, find the flux of \mathbf{F} across S_{2}. Do you see how this problem could be generalized?
3. In each of the following, use the method of the previous problem to find the flux of \mathbf{F} across S.
(a) Let S be the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, outwardly oriented. Assume $\mathbf{F}=\left(x^{2}, 0,2 z\right)$.
(b) Let S be the cone $z=4-\sqrt{x^{2}+y^{2}}, z \geq 0$, oriented upward. Assume $\mathbf{F}=(x y, y z, x z)$.
4. Let R be a solid region with smooth boundary ∂R oriented outward. Assuming all functions are smooth, prove the following identities.
(a) $\iint_{\partial R} \nabla \times \mathbf{F} \cdot d \mathbf{A}=0$
(b) $\iint_{\partial R} f \nabla g \cdot d \mathbf{A}=\iiint_{R}(f \Delta g+\nabla f \cdot \nabla g) d V$.
(c) $\iint_{\partial R}(f \nabla g-g \nabla f) \cdot d \mathbf{A}=\iiint_{R}(f \Delta g-g \Delta f) d V$.
(d) $\iint_{\partial R}(x, y, z) \cdot d \mathbf{A}=3 \operatorname{volume}(R)$
5. Standard integration by parts is proved using the product rule. But there are many different product rules; each gives a different integration by parts.
(a) Let D be a ball in \mathbb{R}^{3} with outward unit normal vector \mathbf{n}. Assuming $\nabla \cdot(f \mathbf{G})=f(\nabla \cdot \mathbf{G})+\mathbf{G} \cdot \nabla f$, prove that

$$
\iiint_{D} f(\nabla \cdot \mathbf{G}) d V=\iint_{\partial D} f \mathbf{G} \cdot d \mathbf{A}-\iiint_{D}(\nabla f) \cdot \mathbf{G} d V .
$$

(b) Now let D be the unit ball centered at the origin. Evaluate

$$
\iiint_{D} e^{-\sqrt{x^{2}+y^{2}+z^{2}}} \nabla \cdot\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) d V .
$$

You can ignore the singularities at the origin (this could be made rigorous).

Stokes' Theorem

1. In each of the following situations, evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{A}$.
(a) Let S be the upper half $(z \geq 0)$ of the sphere $x^{2}+y^{2}+z^{2}=1$, oriented upward, and $\mathbf{F}=\left(x, x z, y e^{\cos y}\right)$.
(b) Let S be the right half $(x \geq 0)$ of the sphere $x^{2}+y^{2}+z^{2}=1$, oriented rightward, and $\mathbf{F}=\left(x^{3},-y^{3}, 0\right)$.
(c) Let S be the part of the plane $z=x$ with $x^{2}+2 x+y^{2} \leq 3$, oriented upward, and $\mathbf{F}=\left((x+1)^{2}, 0,-x^{2}\right)$.
2. Let C be the interesection of a (nonvertical) plane and the cylinder $x^{2}+y^{2}=4$ in \mathbb{R}^{3}. Show that

$$
\oint_{C}(2 x-y) d x+(2 y+x) d y=8 \pi .
$$

3. Let C be a simple, closed, smooth curve on the sphere $x^{2}+y^{2}+z^{2}=1$. Show that $\oint_{C}\left(-2 x z, 0, y^{2}\right) \cdot d \mathbf{r}=0$.
4. Let S be a smooth oriented surface with smooth boundary ∂S. Assuming all functions are smooth, prove the following identities.
(a) $\oint_{\partial S} f \nabla g \cdot d \mathbf{r}=\iint_{S}(\nabla f \times \nabla g) \cdot d \mathbf{A}$
(b) $\oint_{\partial S}(f \nabla g+g \nabla f) \cdot d \mathbf{r}=0$
5. Standard integration by parts is proved using the product rule. But there are many different product rules; each gives a different integration by parts.
(a) Let S be a smooth oriented surface with boundary ∂S. Given a smooth vector field \mathbf{G} and a smooth scalar function f, show that

$$
\iint_{S} f(\nabla \times \mathbf{G}) \cdot d \mathbf{A}=-\iint_{S}(\nabla f \times \mathbf{G}) \cdot d \mathbf{A}+\oint_{\partial S} f \mathbf{G} \cdot d \mathbf{r} .
$$

(b) Now let S be the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$, oriented downward. Define $\mathbf{G}=\left(-y, x, \arctan (x y z) e^{x^{2}}\right)$ and evaluate

$$
\iint_{S} z^{2}(\nabla \times \mathbf{G}) \cdot d \mathbf{A}
$$

(c) (Harder) Recall the identity $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})$. Prove the vector equation

$$
\iint_{S} \nabla f \times d \mathbf{A}=-\oint_{\partial S} f d \mathbf{r} .
$$

Sequences and Series

1. Find the limit of the following sequences.
(a) $a_{n}=\ln n / n$
(b) $a_{n}=(1-2 / n)^{3 n}$
(c) $a_{n}=\sqrt{n^{2}+3 n}-n$
2. Given the sequence $\left(a_{n}\right)$:

$$
\sqrt{1}, \sqrt{1+\sqrt{1}}, \sqrt{1+\sqrt{1+\sqrt{1}}}, \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1}}}}, \ldots
$$

show that $a_{n+1}^{2}-1=a_{n}$. Given that the limit of the sequence exists, use this formula to find it.
3. Evaluate the following series.
(a) $\sum_{n=0}^{\infty} \frac{2^{3 n}}{3^{2 n}}$
(b) $1+\sin ^{2} \theta+\sin ^{4} \theta+\sin ^{6} \theta+\cdots$, where $0<\theta<\pi / 2$
(c) $\frac{14}{15}+\frac{28}{75}+\frac{56}{375}+\frac{112}{1875}+\cdots$
4. Evaluate the following series.
(a) $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+n}}$
(c) $\sum_{n=1}^{\infty} \ln \left(\frac{n(n+2)}{(n+1)^{2}}\right)$
(d) $\sum_{n=0}^{\infty} \arctan (n+1)-\arctan (n)$
(e) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n+1}+(n+1) \sqrt{n}}$
5. A difficult series to evaluate is $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. Use this fact to evaluate the following.
(a) $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\cdots$
(b) $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$

Convergence of Series

1. Determine the convergence of the following series.
(a) $\sum \frac{\sqrt{n}}{n^{2}}$
(b) $\sum \frac{\sqrt{n}}{1+n^{2}}$
(c) $\sum\left(1+\frac{1}{n}\right)^{-n}$
(d) $\sum\left(1-\frac{1}{n}\right)^{n^{2}}$
(e) $\sum \sin (1 / n)$
(f) $\sum n^{2} e^{-n^{3}}$
(g) $\sum \frac{\arctan n}{n^{2}}$
(h) $\sum \frac{1}{\sqrt{n+1}+\sqrt{n}}$
(i) $\sum \frac{k^{-1 / 2}}{1+\sqrt{k}}$
(j) $\sum\left[\left(\frac{n+1}{n}\right)^{n+1}-\left(\frac{n+1}{n}\right)\right]^{-n}$
2. Determine whether each series converges absolutely, conditionally, or not at all.
(a) $\sum \frac{(-1)^{n}}{n \ln n}$
(b) $\sum \frac{(-4)^{n}}{n^{2}}$
(c) $\sum \frac{\cos (n \pi)}{n}$
3. Use the error bound in the alternating series test to approximate, within 2 decimal place accuracy, the following values. The exact value of each series is given only as trivia.
(a) $\sin 1=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\cdots$
(b) $\cos (1 / 2)=1-\frac{(1 / 2)^{2}}{2!}+\frac{(1 / 2)^{4}}{4!}-\frac{(1 / 2)^{6}}{6!}+\cdots$
4. Suppose we want to approximate $\ln 2$ with 2 digits of accuracy. If we use the alternating series test,
(a) How many terms of $\ln 2=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ are needed?
(b) How many terms of $\ln 2=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}}$ are needed?
5. For which real numbers p does the series

$$
\frac{1}{1^{p}}-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots
$$

converge absolutely? Conditionally? Not at all?

Series: Miscellaneous

1. Define $S=1+2 / 3+3 / 3^{2}+4 / 3^{3}+5 / 3^{4}+\cdots$.
(a) Show that the series converges.
(b) Write out a series for $3 S$.
(c) Substract the given equation from the one you just wrote.
(d) Evaluate S using the previous part.
2. There is a constant γ, called the Euler-Mascheroni constant, so that

$$
\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+\epsilon_{n}
$$

where $\epsilon_{n} \rightarrow 0$ when $n \rightarrow \infty$. Use this fact to answer the following.
(a) Use the above formula to show that $\sum(1 / n)$ diverges.
(b) Evaluate $\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)$.
3. Find constants A and B so that

$$
\frac{6^{k}}{\left(3^{k+1}-2^{k+1}\right)\left(3^{k}-2^{k}\right)}=\frac{A 2^{k}}{3^{k}-2^{k}}+\frac{B 2^{k}}{3^{k+1}-2^{k+1}}
$$

Use this to evaluate

$$
\sum_{n=1}^{\infty} \frac{6^{k}}{\left(3^{k+1}-2^{k+1}\right)\left(3^{k}-2^{k}\right)}
$$

4. The Cauchy Condensation test states that, given a positive nonincreasing sequence $a_{n}, \sum a_{n}$ converges if and only if $\sum 2^{n} a_{2^{n}}$ converges. Use this test to check convergence of the following:
(a) $\sum 1 / n$
(b) $\sum 1 /\left(n \log _{2} n\right)$
(c) $\sum 1 /\left(n\left(\log _{2} n\right)\left(\log _{2} \log _{2} n\right)\right)$
5. The Fibonacci numbers form a sequence F_{n}, where $F_{0}=F_{1}=1$ and $F_{n+2}=F_{n}+F_{n+1}$ for all integers n.
(a) Use telescoping to evaluate $\sum_{n=1}^{\infty} \frac{F_{n-1}}{F_{n} F_{n+1}}$.
(b) It turns out that (amazingly)

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}
$$

Does $\sum F_{n}^{-1}$ converge?
6. In 1914, Ramanujan proved that

$$
\frac{1}{\pi}=\frac{\sqrt{8}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}}
$$

Show that this series converges.

