
Math 5C Discussion Problems 2

Path Independence

1. Let C be the striaght-line path in R2 from the origin to (3, 1). Define f(x, y) = xyexy.

(a) Evaluate
∫

C

∇f · dr.

(b) Evaluate
∫

C

((1, 0) +∇f) · dr.

(c) Evaluate
∫

C

((y, 0) +∇f) · dr.

2. Let C be the positively oriented unit circle in R2 centered at the origin.

(a) Evaluate
∮

C

y dx− x dy.

(b) Use the previous part to explain why (y,−x) isn’t the gradient of a function.

3. For each of the following vector fields, determine whether it is the gradient of a function.

(a) (4x2 − 4y2 + x, 7xy + ln y) on R2

(b) (3x2 lnx+ x2, x3/y) on R2

(c) (x3y, 0, z2) on R3

4. For each of the following, find the function f .

(a) f(0, 0, 0) = 0 and ∇f = (x, y, z)

(b) f(1, 2, 3) = 4 and ∇f = (5, 6, 7)

(c) f(1, 1, 1) = 1 and ∇f = (2xyz + sinx, x2z, x2y)

5. For which a is (ax ln y, 2y + x2/y) the gradient of a function in (some subset of) R2?

6. Let C be a curve in R2 given by r(t) = (cos5 t, sin3 t, t4), where 0 ≤ t ≤ π. Evaluate
∫

C

(yz, xz, xy) · dr.



Green’s Theorem

1. Let D be the unit disk centered at the origin in R2.

(a) Evaluate
∮

∂D

dx+ x dy.

(b) Evaluate
∮

∂D

arctan(esin x) dx+ y dy.

(c) Evaluate
∮

∂D

(x3 − y3) dx+ (x3 + y3) dy.

(d) Evaluate
∮

∂D

∂f

∂y
dx− ∂f

∂x
dy, given that fxx + fyy = 0.

2. Find the area of the following regions in R2 using Green’s theorem.

(a) The unit disk

(b) The inverted cycloid: the region bounded by the x axis and the parametric curve x = a(t − sin t),
y = a(1− cos t), 0 ≤ t ≤ 2π

(c) The astroid: x2/3 + y2/3 ≤ a2/3

(d) The ellipse: x2/a2 + y2/b2 ≤ 1

3. Let R be a region in the plane with ∂R positively oriented. On ∂R, dr = (dx, dy). Derive an expression
for n ds in terms of dx and dy. Deduce (using the ‘standard’ Green’s theorem) the normal form of Green’s
theorem: ∮

∂R

F · n ds =
∫∫

R

∇ · F dA.

Notice that this is just a 2D version of the divergence theorem.

4. Let f be a smooth function and D be a disk in R2 with outward unit normal n. For points on ∂D, denote
∂f/∂n to mean the directional derivative of f in the direction of n. Prove that∮

∂D

∂f

∂n
ds =

∫∫
D

∆f dA.

5. Prove the identity
∮

∂D

f∇f · n ds =
∫∫

D

(f∆f + ‖∇f‖2) dA.

6. Prove the identity
∮

∂D

PQdx+ PQdy =
∫∫

D

[
Q

(
∂P

∂x
− ∂P

∂y

)
+ P

(
∂Q

∂x
− ∂Q

∂y

)]
dA.



Divergence Theorem

1. In each of the following situations, evaluate
∫∫

∂R

F · dA. Assume ∂R is outward oriented.

(a) Let R be the unit ball centered at the origin and F = (x, 2y, 3z).

(b) Let R be the unit cube 0 ≤ x, y, z ≤ 1 and F = (y2 + sin z, esin z + 2, xy + z).

(c) Let R be the hemisphere x2 + y2 + z2 ≤ 1, z ≥ 0 and F = (xz, yz, z2).

2. Let S1 be the disk x2 + y2 ≤ 1, z = 1, oriented upward. Let S2 be the cone x2 + y2 = z2, 0 ≤ z ≤ 1,
oriented downward. Together, S1 and S2 enclose a region R. Define F = (x+ ey, y + cosx, z).

(a) Find the flux of F across S1 directly.

(b) Integrate ∇ · F over R.

(c) With no extra computation, find the flux of F across S2. Do you see how this problem could be
generalized?

3. In each of the following, use the method of the previous problem to find the flux of F across S.

(a) Let S be the hemisphere x2 + y2 + z2 = 9, z ≥ 0, outwardly oriented. Assume F = (x2, 0, 2z).

(b) Let S be the cone z = 4−
√
x2 + y2, z ≥ 0, oriented upward . Assume F = (xy, yz, xz).

4. Let R be a solid region with smooth boundary ∂R oriented outward. Assuming all functions are smooth,
prove the following identities.

(a)
∫∫

∂R

∇× F · dA = 0

(b)
∫∫

∂R

f∇g · dA =
∫∫∫

R

(f∆g +∇f · ∇g) dV .

(c)
∫∫

∂R

(f∇g − g∇f) · dA =
∫∫∫

R

(f∆g − g∆f) dV .

(d)
∫∫

∂R

(x, y, z) · dA = 3 volume(R)

5. Standard integration by parts is proved using the product rule. But there are many different product rules;
each gives a different integration by parts.

(a) Let D be a ball in R3 with outward unit normal vector n. Assuming ∇ · (fG) = f(∇ ·G) + G · ∇f ,
prove that ∫∫∫

D

f(∇ ·G) dV =
∫∫

∂D

fG · dA−
∫∫∫

D

(∇f) ·G dV.

(b) Now let D be the unit ball centered at the origin. Evaluate∫∫∫
D

e−
√

x2+y2+z2 ∇ ·
(

(x, y, z)
(x2 + y2 + z2)3/2

)
dV.

You can ignore the singularities at the origin (this could be made rigorous).



Stokes’ Theorem

1. In each of the following situations, evaluate
∫∫

S

∇× F · dA.

(a) Let S be the upper half (z ≥ 0) of the sphere x2+y2+z2 = 1, oriented upward, and F = (x, xz, yecos y).

(b) Let S be the right half (x ≥ 0) of the sphere x2 +y2 +z2 = 1, oriented rightward, and F = (x3,−y3, 0).

(c) Let S be the part of the plane z = x with x2+2x+y2 ≤ 3, oriented upward, and F = ((x+1)2, 0,−x2).

2. Let C be the interesection of a (nonvertical) plane and the cylinder x2 + y2 = 4 in R3. Show that∮
C

(2x− y) dx+ (2y + x) dy = 8π.

3. Let C be a simple, closed, smooth curve on the sphere x2 +y2 + z2 = 1. Show that
∮

C

(−2xz, 0, y2) ·dr = 0.

4. Let S be a smooth oriented surface with smooth boundary ∂S. Assuming all functions are smooth, prove
the following identities.

(a)
∮

∂S

f∇g · dr =
∫∫

S

(∇f ×∇g) · dA

(b)
∮

∂S

(f∇g + g∇f) · dr = 0

5. Standard integration by parts is proved using the product rule. But there are many different product rules;
each gives a different integration by parts.

(a) Let S be a smooth oriented surface with boundary ∂S. Given a smooth vector field G and a smooth
scalar function f , show that∫∫

S

f(∇×G) · dA = −
∫∫

S

(∇f ×G) · dA +
∮

∂S

fG · dr.

(b) Now let S be the cone z =
√
x2 + y2, 0 ≤ z ≤ 1, oriented downward. Define G = (−y, x, arctan(xyz)ex2

)
and evaluate ∫∫

S

z2 (∇×G) · dA

(c) (Harder) Recall the identity u · (v ×w) = w · (u× v). Prove the vector equation∫∫
S

∇f × dA = −
∮

∂S

fdr.



Sequences and Series

1. Find the limit of the following sequences.

(a) an = lnn/n

(b) an = (1− 2/n)3n

(c) an =
√
n2 + 3n− n

2. Given the sequence (an):

√
1,
√

1 +
√

1,

√
1 +

√
1 +
√

1,

√
1 +

√
1 +

√
1 +
√

1, . . .

show that a2
n+1 − 1 = an. Given that the limit of the sequence exists, use this formula to find it.

3. Evaluate the following series.

(a)
∞∑

n=0

23n

32n

(b) 1 + sin2 θ + sin4 θ + sin6 θ + · · · , where 0 < θ < π/2

(c)
14
15

+
28
75

+
56
375

+
112
1875

+ · · ·

4. Evaluate the following series.

(a)
1

1 · 2
+

1
2 · 3

+
1

3 · 4
+ · · ·

(b)
∞∑

n=1

√
n+ 1−

√
n√

n2 + n

(c)
∞∑

n=1

ln
(
n(n+ 2)
(n+ 1)2

)

(d)
∞∑

n=0

arctan(n+ 1)− arctan(n)

(e)
∞∑

n=1

1
n
√
n+ 1 + (n+ 1)

√
n

5. A difficult series to evaluate is
∞∑

n=1

1
n2

=
π2

6
. Use this fact to evaluate the following.

(a)
1
22

+
1
42

+
1
62

+ · · ·

(b) 1 +
1
32

+
1
52

+
1
72

+ · · ·

(c)
∞∑

n=1

(−1)n

n2



Convergence of Series

1. Determine the convergence of the following series.

(a)
∑ √

n

n2

(b)
∑ √

n

1 + n2

(c)
∑(

1 +
1
n

)−n

(d)
∑(

1− 1
n

)n2

(e)
∑

sin(1/n)

(f)
∑

n2e−n3

(g)
∑ arctann

n2

(h)
∑ 1√

n+ 1 +
√
n

(i)
∑ k−1/2

1 +
√
k

(j)
∑[(

n+ 1
n

)n+1

−
(
n+ 1
n

)]−n

2. Determine whether each series converges absolutely, conditionally, or not at all.

(a)
∑ (−1)n

n lnn

(b)
∑ (−4)n

n2

(c)
∑ cos(nπ)

n

3. Use the error bound in the alternating series test to approximate, within 2 decimal place accuracy, the
following values. The exact value of each series is given only as trivia.

(a) sin 1 = 1− 1
3!

+
1
5!
− 1

7!
+ · · ·

(b) cos(1/2) = 1− (1/2)2

2!
+

(1/2)4

4!
− (1/2)6

6!
+ · · ·

4. Suppose we want to approximate ln 2 with 2 digits of accuracy. If we use the alternating series test,

(a) How many terms of ln 2 =
∞∑

n=1

(−1)n−1

n
are needed?

(b) How many terms of ln 2 =
∞∑

n=1

(−1)n

n2n
are needed?

5. For which real numbers p does the series

1
1p
− 1

2p
+

1
3p
− 1

4p
+ · · ·

converge absolutely? Conditionally? Not at all?



Series: Miscellaneous

1. Define S = 1 + 2/3 + 3/32 + 4/33 + 5/34 + · · · .

(a) Show that the series converges.

(b) Write out a series for 3S.

(c) Substract the given equation from the one you just wrote.

(d) Evaluate S using the previous part.

2. There is a constant γ, called the Euler-Mascheroni constant, so that

n∑
k=1

1
k

= lnn+ γ + εn,

where εn → 0 when n→∞. Use this fact to answer the following.

(a) Use the above formula to show that
∑

(1/n) diverges.

(b) Evaluate lim
n→∞

(
1

n+ 1
+

1
n+ 2

+ · · ·+ 1
2n

)
.

3. Find constants A and B so that

6k

(3k+1 − 2k+1)(3k − 2k)
=

A2k

3k − 2k
+

B2k

3k+1 − 2k+1
.

Use this to evaluate
∞∑

n=1

6k

(3k+1 − 2k+1)(3k − 2k)
.

4. The Cauchy Condensation test states that, given a positive nonincreasing sequence an,
∑
an converges if

and only if
∑

2na2n converges. Use this test to check convergence of the following:

(a)
∑

1/n

(b)
∑

1/(n log2 n)

(c)
∑

1/(n(log2 n)(log2 log2 n))

5. The Fibonacci numbers form a sequence Fn, where F0 = F1 = 1 and Fn+2 = Fn + Fn+1 for all integers n.

(a) Use telescoping to evaluate
∞∑

n=1

Fn−1

FnFn+1
.

(b) It turns out that (amazingly)

Fn =
1√
5

(
1 +
√

5
2

)n+1

− 1√
5

(
1−
√

5
2

)n+1

.

Does
∑
F−1

n converge?

6. In 1914, Ramanujan proved that

1
π

=
√

8
9801

∞∑
k=0

(4k)!(1103 + 26390k)
(k!)43964k

.

Show that this series converges.


